in the boundary layer at ¢ ~ 1. In the case 8 = 15 the profiles of u are monotonic; the degree of influence of
rotation on the longitudinal velocity field can be determined by the maximum value of the difference in the
values of the longitudinal velocities for a rotating and a nonrotating cylinder at each specified cross section
of the boundary layer; it turns out that this quantity first increases (in proportion to its distance from the
leading edge of the cylinder), then decreases, acquiring its maximum value at £ 2 1,
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MOTION OF A SPHERICAL SOLID PARTICLE IN A NONUNIFORM
FLOW OF A VISCOUS INCOMPRESSIBLE LIQUID

V. S, Kuptsov UDC 532.582.7+532.516.5

The effect of a particle on the basic flow is studied, and the equations of motion of the particle
are formulated, The problem is solved in the Stokes approximation with an accuracy up to the
cube of the ratio of the radius of the sphere to the distance from the center of the sphere to
peculiarities in the basic flow., An analogous problem concerning the motion of a sphere in a
nonuniform flow of an ideal liquid has been discussed in [1]. We note that the solution is known
in the case of flow around two spheres by a uniform flow of a viscous incompressible liquid 2],
and we also note the papers [3, 4] on the motion of a small particle in a cylindrical tube.

Let us consider the slow flow {without a particle) of a viscous incompressible liquid. Let yj be a fixed
coordinate system; then the velocity and pressure of this flow will satisfy the equations

3 i} -3 [
8% 2 o du)
@2——;:?)—; - =0, @)
=t 9% i o

where ug are the projections of the velocity vector onto the coordinate axes yj; p® is the hydrodynamic pressure;
u is the dynamic modulus of viscosity; andi=1, 2, 3,

‘ Let us introduce a new coordinate system x;, whose center has the coordinates q; in the coordinate sys~
tem yj. The relation between the coordinates is of the form )

Y; = z; -+ ¢;.
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We will assume the solution of (1) {o be specified in the coordinate system x; in the form

o . N o™ pt
g == Ui -~ Ui, po - Z ml m (‘I) Ljoor Ty (2)
m=0

where u; is the general solution of the uniform equations (1), and u'; is a particular solution of (1). Using the
results of [5], one can present them in the form

o f 6mu2 2 am,_ro {
w3 : - Sz Lg)r; . 2] o meef e Ia8ip — zpbial Ty Lyl {3
i ;1-& (m — 1): {393‘ o dy& (q) @xi [( s T+ Qa} i k] H dy} o 6yk (‘I)I 2 Uik o }1] x‘ g‘;’
. < 1 gt 2 ) ) 223 L TR 4
Ui = T;-:0 wm! 951} - By (@) { 2m - 1) dJ‘ Fe SRR Vi (m = 1y(2m + 1) (2m =-3) 5:: (\ FRnl ’ @)

where o =B =1i,j+...+k=m, y +...+k=m—1 and summation over repeated indices is also assumed;

63j is the Kronecker tensor: = {q, qy, q3} ; and r? = XgXge

The function ¥ satisfies the relationship

@i’.,:aiv_ﬂ__ffﬁ. _ (5)

dy; Byﬁ 9,

In Egs. (3)— (5) X%, u;, p’ are harmonic functions.

Let us put the center of the sphere at the point y; = qj. Assuming that the flow disturbed by the sphere
is again described by equations of the form (1), one can seek a solution for flow around a sphere by a nonuni-
form flow with the help of formulas similar to (2)— @). We present

viesul b vihvl pept s, (6)
where the functions v{, v{, and p' give the corrections to the basic problem due to the introduction of a sphere

into it, and they should be selected so that their effect at large distances from the sphere is very small with
respect to the quantities v; and p,

The attachment condition
U; 51‘-_—& = O: (7)

where g is the radius of the spherical particle, is satisfied on the sphere,

We present vis Vi', and p' in the form

o m A
o v 1 a o ( ) d Cott e . )
PO e T 0 | DG\ g Kol B

m=0 -y drpd ot
s 2mdt N _m—rl S — 708 L
. Iy ' mr W3 (r,l B TR ja) P /o
e T T )+ g el U U R ®)
2m=3 771 . et . » i

N Ot 3u, {m -1 2y p—- & N 2 AT } 9
Ll_‘vg{) pml = dy; ... Oy, (0 G 1 Zm—-1) Qi - 3} 9z (52 -+ ) 2 @2m+3) c‘m( AL ®

243 m

v ba "
p'= T - g 77, (,y Q) .. 2y, o)

where cp, Ciy, ¢, and by, are unknown constants corresponding to a specific set of products Xje o o Xo

We substitute Egs, (8) and (9) into (6), and using the conditions (7), we obtain a system of equations for
determining the unknown constants
AT + AT i1 — Bem -+ bpLl = DI
e‘,’mA;Tt —{— Aglt,’ﬂ~}_1 — mem = Tm,
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q, 6"‘+1u8

P . m_ .
where { =1, 2, 3; Ay = m+3) 959y, . 07, (9);

t?m 2 (9 ?
m__ m__ 22 {(2m? -+ m — 3) m,
4 ay; - (‘1) L= —Smrnemrands

m__m 17'"7“’ ‘ a0 11
5“‘“m+1'[aya6y....ayh () 8p; — —ag‘;@‘—‘(‘l)‘s&f]' an

a? {2m? - 44m -+ 12) i 3m+1p0 m " m
ni{m I 2)2m L 5 (2m—5) 29,9y -+~ o4, (9 — 47" — 47 + By

DT =—

m ‘_’ a2 {(m - 1) m, m__ a*(m -+ 1) 6m+1P°
N 25 2m T 5 45 T T T W) En R Cntor 95,0y, ... 0y (@)

. It follows from the boundary conditions (7) that c'o = 0, Without restricting the generality, it is conve-
nienttoset ey, =1 form=1,2....

Solving the system (11), we determine ¢y, cfy,, bp,:

o o ®@mm—3) (1T"—DI") DI = 4Cpn sy + BFCr
S 242+ 1) @m - 3) (L + A ™) AP ?
™m-py _ bl o, AT — AR — DT

by = —

L4 am By

it foiiows from the last equation for cm that BO =0, If BG = 0, then it is necessary according to {8) to
set c}&l equal to zero, Substituting the values found for by, ¢m, ¢}y, and ¢}, into (8)-(10), we obtain relations
from Egs. (6) for determining the velocity and pressure fields, The boundary-value conditions for the main
hydrodynamic flow in the constructed solution can be fulfilled due to (8)-(10) to an accuracy of (a/L)?, where L
is the distance from the center of the sphere to the edges of the main flow,

Let us determine the force acting on the spherical particle,

Fg == j‘ Gi;niés, (12)
S

where o i = pﬁié +,,¢(av‘i/axzv+ avy / oxi); S, is the area of the surface of the sphere, and n; are the components
of the outer normal to the sphere.

In calculating the force acting on the sphére from Eq. (12), relationships were used for the velocity and
the pressure in which terms of order higher than (z/L)® were neglected, and we obtain integrals of the kind
( 1ds, j‘ znds, { x 52,1, ( X508, which are calculated according to [1].

sa sa &t sa

Finally, we obtain an expressmn for the force acting on a gpherical particle restrained in a quiescent
state in the form

F = 8npaulq) -+ 3npag(dus/dm)q) -+ na®(0p°/oy)g). (13}
One can obtain from Eq. (13) the force acting on a sphere placed in a uniform flow, i.e.,

ui(q) = w; == const, p® = const, F; = Bapau,.

Equation (13) agrees w1th the results of [3, 4] concerning the motion of a small spherical particleinacy-
lindrical tube,

Because of the linearity of the system of equations (1), one can combine the forces acting on the sphere
which are obtained in the case of flow around a sphere by a nonuniform flow and also in the case of the motion
of a sphere in a stationary liquid. The sum of the forces acting should equal zero

Fi-F) =0, a4a.
where F!=—6ruadq; /dtis the Stokes formula for determining the force acting on a sphere moving in 2 station-
/A I

ary liquid. According to Egs. (13) and (14) we obtain
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dqi/dt = w(q) -~ (L/2)q,(du,/0y1)(q) -+ (a*/6w) (9p°/0y:)(a), 15)
where t is the time,

Equations (15) which have been derived describe the motion of the center of a particle in a nonuniform
flow of a viscous incompressible liquid,
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THEORY OF TURBULENT MIXING AT THE INTERFACE OF
FLUIDS IN A GRAVITY FIELD

V., E. Neuvazhaev and V, G, Yakovlev UDC 532.517.4

The theory of turbulent mixing at the interface of two media in accelerated motion was con-~
structed in [1}, and an approximate solution was given for incompressible fluids. The time
variation of kinetic energy was neglected in the equation of balance for the kinetic energy

of the turbulent motion. In [2] the characteristic turbulent velocity is averaged over the
mixing region. This allows the initial equaticns to be solved allowing for the time variation
of kinetic energy. It turns out that the resulting density profile roughly coincides with the
profile of [1] within a wide range of variation of the initial density differential. In the pres-
ent paper the equations for the mixing of incompressible fluids are studied in their complete
form, Itis established that the solutions of {1, 2] are applicable within a limited region, valid
for small density ratios, The resulting solution is analyzed qualitatively, and it is shown that
the density gradient at the mixing front is discontinuous. The dependence of the solution on
two empirical constants is investigated, An approximate choice of the values of these con-
stants is made on the basis of the theoretical considerations of {2, 3], and by comparison with
the solution of {1]. The mixing asymmetry is found numerically as a function of the initial
density differential, Quantitative characteristics of the solution are illustrated in graphs,

1, Formulation of the Problem

In order to describe the turbulent mixing of two substances of constant densities p; and p, situated in a
gravity field g, 2 semiempirical theory is constructed. A characteristic turbulence velocity v and characteristic
turbulence length [ are introduced. An energy balance equation for the turbulence velocity v is constructed
from dimensional considerations [1]:

0ov3/20t — voudil = plvw®. CAd)
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